Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Estimation of temporal variation of discharged inventory of radioactive strontium $$^{90}$$Sr ($$^{89}$$Sr) from port of Fukushima Daiichi Nuclear Power Plant; Analysis of the temporal variation from the accident to March 2022 and evaluation of its impact on Fukushima coast and offshore areas

Machida, Masahiko; Iwata, Ayako; Yamada, Susumu; Otosaka, Shigeyoshi*; Kobayashi, Takuya; Funasaka, Hideyuki*; Morita, Takami*

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(4), p.119 - 139, 2023/11

We estimate monthly discharged inventory of $$^{90}$$Sr from port of Fukushima Daiichi Nuclear Power Plant (1F) from Jun. 2013 to Mar. 2022 by using the Voronoi tessellation method inside the port, following the monitoring of $$^{90}$$Sr sea water radioactivity concentration inside the port. The results suggest that the closure of sea side impermeable wall is the most effective for the reduction of discharged one. In addition, the results roughly reveal the monthly discharged inventory required to observe visible enhancement of the sea radioactivity concentration from the background level in each area. Such outcome is significant for considering environmental impacts on the planned future releasing of the treated water accumulated in 1F site.

JAEA Reports

Common evaluation procedure radioactivity concentration by theoretical calculation for radioactive waste generated from the decommissioning of research reactors

Okada, Shota; Murakami, Masashi; Kochiyama, Mami; Izumo, Sari; Sakai, Akihiro

JAEA-Testing 2022-002, 66 Pages, 2022/08

JAEA-Testing-2022-002.pdf:2.46MB

Japan Atomic Energy Agency is an implementing organization of burial disposal for low-level radioactive waste generated from research, industrial and medical facilities in Japan. Radioactivity concentrations of the waste are essential information for design of the disposal facility and for licensing process. A lot of the waste subjected to the burial disposal is arising from dismantling of nuclear facilities. Radioactive Wastes Disposal enter has therefore discussed a procedure to evaluate the radioactivity concentrations by theoretical calculation for waste arising from the dismantling of the research reactors facilities and summarized the common procedure. The procedure includes evaluation of radioactive inventory by activation calculation, validation of the calculation results, and determination of the disposal classification as well as organization of the data on total radioactivity and maximum radioactivity concentration for each classification. For the evaluation of radioactive inventory, neutron flux and energy spectra are calculated at each region in the reactor facility using two- or three-dimensional neutron transport code. The activation calculation is then conducted for 140 nuclides using the results of neutron transport calculation and an activation calculation code. The recommended codes in this report for neutron transport calculation are two-dimensional discrete ordinate code DORT, three-dimensional discrete ordinate code TORT, or Monte Carlo codes MCNP and PHITS, and for activation calculation is ORIGEN-S. Other recommendation of cross-section libraries and calculation conditions are also indicated in this report. In the course of the establishment of the procedure, Radioactive Wastes Disposal Center has discussed the commonly available procedure at meetings. It has periodically held to exchange information with external operators which have research reactor facilities. The procedure will properly be reviewed and be revised by reflecting future situ

Journal Articles

Experimental study on the localization and estimation of radioactivity in concrete rubble using image reconstruction algorithms

Takai, Shizuka; Namekawa, Masakazu*; Shimada, Taro; Takeda, Seiji

IEEE Transactions on Nuclear Science, 69(7), p.1789 - 1798, 2022/07

 Times Cited Count:0 Percentile:0.01(Engineering, Electrical & Electronic)

To reduce a large amount of contaminated concrete rubble stored in the Fukushima Daiichi Nuclear Power Station site, recycling low-radioactivity rubble within the site is a possible remedy. To promote recycling while ensuring safety, not only the average radioactivity but also the radioactivity distribution of concrete rubble should be efficiently evaluated because the details of rubble contamination caused by the accident remain unclear and likely include hotspots. However, evaluating inhomogeneous contamination of thick and/or dense materials is difficult using previous measurement systems, such as clearance monitors. This study experimentally confirmed the potential applicability of image reconstruction algorithms for radioactivity distribution evaluation in concrete rubble filled in a chamber. Radiation was measured using plastic scintillation fiber around the chamber (50 $$times$$ 50 $$times$$ 40 cm$$^{3}$$). Localized hotspots were simulated using standard sources of $$^{137}$$Cs, which is one of the main nuclides of contaminated rubble. The radioactivity distribution was calculated for 100 or 50 voxels (voxel size: (10 cm)$$^{3}$$ or 10 $$times$$ 10 $$times$$ 20 cm$$^{3}$$) constituting the chamber. For 100 voxels, inner hotspots were undetected, whereas, for 50 voxels, both inner and surface hotspots were reconstructible. The distribution evaluated using the maximum likelihood expectation maximization algorithm was the most accurate; the average radioactivity was estimated within 70% accuracy in all seven cases.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute (FY2020)

Asakura, Kazuki; Shimomura, Yusuke; Donomae, Yasushi; Abe, Kazuyuki; Kitamura, Ryoichi; Miyakoshi, Hiroyuki; Takamatsu, Misao; Sakamoto, Naoki; Isozaki, Ryosuke; Onishi, Takashi; et al.

JAEA-Review 2021-020, 42 Pages, 2021/10

JAEA-Review-2021-020.pdf:2.95MB

The disposal of radioactive waste from the research facility need to calculate from the radioactivity concentration that based on variously nuclear fuels and materials. In Japan Atomic Energy Agency Oarai Research and Development Institute, the study on considering disposal is being advanced among the facilities which generate radioactive waste as well as the facilities which process radioactive waste. This report summarizes a study result in FY2020 about the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute (FY2019)

Asakura, Kazuki; Shimomura, Yusuke; Donomae, Yasushi; Abe, Kazuyuki; Kitamura, Ryoichi

JAEA-Review 2020-015, 66 Pages, 2020/09

JAEA-Review-2020-015.pdf:4.27MB

The disposal of radioactive waste from the research facility need to calculated from the radioactivity concentration that based on variously nuclear fuels and materials. In Japan Atomic Energy Oarai Research and Development Institute, the study on considering disposal is being advanced among the facilities which generate radioactive waste as well as the facilities which process radioactive waste. This report summarizes a study result in FY2019 about the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste generated from the dismantling of research reactors

Murakami, Masashi; Hoshino, Yuzuru; Nakatani, Takayoshi; Sugaya, Toshikatsu; Fukumura, Nobuo*; Sanda, Toshio*; Sakai, Akihiro

JAEA-Technology 2019-003, 50 Pages, 2019/06

JAEA-Technology-2019-003.pdf:4.42MB

Toward the establishment of a common approach to determine the radioactivity concentrations in dismantling wastes arising from research reactors, radionuclide concentrations in the reactor structure materials of aluminum, carbon steel, shield concrete, and graphite of TRIGA Mark II reactor at Rikkyo University, Japan, were evaluated with both radiochemical analysis and theoretical calculation. The measured nuclides by the radiochemical analysis were $$^{3}$$H, $$^{60}$$Co, and $$^{63}$$Ni in aluminum, $$^{3}$$H, $$^{60}$$Co, $$^{63}$$Ni, and $$^{152}$$Eu in carbon steel, $$^{3}$$H, $$^{60}$$Co, and $$^{152}$$Eu in shield concrete, and $$^{3}$$H, $$^{14}$$C, $$^{60}$$Co, $$^{63}$$Ni, and $$^{152}$$Eu in graphite. Neutron-flux distributions and neutron-induced activities were computed with DORT and ORIGEN-ARP codes, respectively. Using the results of material composition analysis, radioactivity concentrations were conservatively predicted with good accuracy except for graphite material.

JAEA Reports

Study on the evaluation methodology of the radioactivity concentration in low-level radioactive wastes generated from JRR-2 & JRR-3

Hayashi, Hirokazu; Izumo, Sari; Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro

JAEA-Technology 2018-001, 66 Pages, 2018/06

JAEA-Technology-2018-001.pdf:4.12MB
JAEA-Technology-2018-001(errata).pdf:0.54MB

It is necessary to establish evaluation methodology of radioactivity concentrations of each radionuclide in waste packages for operation of the Near-surface Trench disposal and Sub-surface Pit disposal facility in near future, which has been preparing for low-level radioactive wastes generated from research facilities in JAEA. The radionuclides containing in waste packages generated from both JRR-2 and JRR-3, which are H-3, C-14, Cl-36, Co-60, Ni-63, Sr-90, Nb-94, Tc-99, Ag-108m, I-129, Cs-137, Eu-152, Eu-154, U-234, U-238, Pu-239+240, Pu-238+Am-241, Cm-243+244, were evaluated their density based on radiochemical analysis data, and the Evaluation Methodology of the Radioactivity Concentration such as Scaling Factor method and mean activity concentration method was studied in this report.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste generated from post-irradiation examination facilities, 2

Tsuji, Tomoyuki; Hoshino, Yuzuru; Sakai, Akihiro; Sakamoto, Yoshiaki; Suzuki, Yasuo*; Machida, Hiroshi*

JAEA-Technology 2017-010, 75 Pages, 2017/06

JAEA-Technology-2017-010.pdf:2.31MB

It is necessary for reasonable disposal to be studied on evaluation methods to determine radioactivity concentrations in the radioactive wastes, which is generated from post-irradiation examination (PIE) facilities, for establishment of reasonable confirmation methods concerning radioactive wastes generated from research, industrial, and medical facilities. It has been chosen the PIE facilities of NUCLEAR DEVELOPMENT CORPORATION as a model for this study. As a result, it has been confirmed that the theoretical methods are applied for the important nuclides (H-3, C-14, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, Eu-154, U-234, U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Am-241 and Cm-244).

JAEA Reports

Method and result for calculation of radioactivity concentration of radionuclide corresponding to dose criterion for near surface disposal of radioactive waste generated from research, medical, and industrial facilities

Okada, Shota; Kurosawa, Ryohei; Sakai, Akihiro; Nakata, Hisakazu; Amazawa, Hiroya

JAEA-Technology 2015-016, 44 Pages, 2015/07

JAEA-Technology-2015-016.pdf:5.8MB

In this report, we calculated radioactivity concentration of radionuclides potentially contained in low level radioactive waste (LLW) generated from research, medical, and industrial facilities corresponding to dose criterion (10 $$mu$$Sv/y) for near surface disposal. 220 kinds of nuclides whose half-life are more than 30 days were selected. Radioactivity concentrations corresponding to dose criterion of 40 nuclides among 220 ones were calculated by using the representative model because the concentrations of 40 nuclides had not been calculated yet. Skyshine dose from each of 19 nuclides, whose radioactivity concentration were invalid values that are larger than the specific radioactivity of nuclides, during operation of disposal facility was calculated. These radioactivity concentrations can be used as criteria of categorization of LLW between trench type and concrete vault type disposal and of preliminary selection of important nuclides of these disposals in the generic conditions.

JAEA Reports

Detailed investigation on the environmental effects from the liquid effluent of JNC reprocessing plant (IV); (April, 1996$$sim$$March, 2000)

; Shinohara, Kunihiko; ; ; ; Isozaki, Tokuju; ; *

JNC TN8440 2000-003, 93 Pages, 2000/08

JNC-TN8440-2000-003.pdf:2.2MB

The investigation on the radioactivity concentration for gross beta, $$^{3}$$H and $$^{137}$$Cs in seawater collected around the discharge point had been performed in order to grasp the change of the activity level of the coastal seawater offshore the JNC Tokai Works from the low level liquid effluent of the reprocessing plant. After the investigation on the radioactivity in seawater during the hot examination, the detailed investigation on the environmental effects from the liquid effluent of JNC reprocessing plant has been performed since July 1978 on the basis of the request from Ibaraki prefecture as the full-scale operation of the reprocessing plant. Consequently, no increase of the radioactive concentration due to the discharged effluent has been observed. And also, as the result of the consideration to the investigation on the environmental effect from the liquid effluent throughout 22 years since 1978, no change of the radioactive concentration level in seawater was recognized.

Journal Articles

Aerosol behaviors in dismantling of nuclear facilities

Shimada, Taro; Tachibana, Mitsuo; Yanagihara, Satoshi

Konsoryu, 13(4), p.350 - 357, 1999/12

no abstracts in English

Journal Articles

Journal Articles

A Nuclide-separation wire precipitator for measurement of noble-gas fission products

Katagiri, Masaki; Kishimoto, Maki; Ito, Hirokuni; ; Fukushima, Masao; Okawa, Hiroshi;

Nuclear Instruments and Methods in Physics Research A, 327, p.463 - 468, 1993/00

 Times Cited Count:3 Percentile:43.06(Instruments & Instrumentation)

no abstracts in English

JAEA Reports

JAEA Reports

None

; ;

PNC TN8420 92-017, 102 Pages, 1992/09

PNC-TN8420-92-017.pdf:3.28MB

None

Journal Articles

Nondestructive and quantitative method for measuring radioactivity from crud; Liquids and gases in a contaminated pipe

Katagiri, Masaki; Ito, Hirokuni;

Journal of Nuclear Science and Technology, 29(9), p.831 - 841, 1992/09

no abstracts in English

Journal Articles

Safety evaluation of asphalt products, 1; Radiation decomposition of asphalt products

; ;

Journal of Nuclear Science and Technology, 14(2), p.125 - 130, 1977/02

no abstracts in English

Oral presentation

Relation between radioactivity concentration in soil and ambient dose equivalent rate for localized radiocesium contamination

Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya

no journal, , 

no abstracts in English

Oral presentation

Development of in situ high speed monitoring system for radioactive concentration of wastewater, 1

Hatano, Toshihisa*; Fukui, Hisatomo*; Ota, Hiroshi*; Hirano, Hiroyuki*; Saito, Hideyuki*; Hiratsuka, Hajime

no journal, , 

no abstracts in English

27 (Records 1-20 displayed on this page)